Ultrasensitive optical imaging with lanthanide lumiphores.
نویسندگان
چکیده
In principle, the millisecond emission lifetimes of lanthanide chelates should enable their ultrasensitive detection in biological systems by time-resolved optical microscopy. In practice, however, lanthanide imaging techniques have provided no better sensitivity than conventional fluorescence microscopy. Here, we identified three fundamental problems that have impeded lanthanide microscopy: low photon flux, inefficient excitation, and optics-derived background luminescence. We overcame these limitations with a new lanthanide imaging modality, transreflected illumination with luminescence resonance energy transfer (trLRET), which increases the time-integrated signal intensities of lanthanide lumiphores by 170-fold and the signal-to-background ratios by 75-fold. We demonstrate that trLRET provides at least an order-of-magnitude increase in detection sensitivity over that of conventional epifluorescence microscopy when used to visualize endogenous protein expression in zebrafish embryos. We also show that trLRET can be used to optically detect molecular interactions in vivo. trLRET promises to unlock the full potential of lanthanide lumiphores for ultrasensitive, autofluorescence-free biological imaging.
منابع مشابه
Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays.
The principles and practice of the application of time-resolved lanthanide chelate luminescence (or fluorescence) as a detection method for ultrasensitive bioanalytical assays such as immunoassays and nucleic acid hybridization assays are reviewed. The various lanthanide chelate-based detection systems which have been developed for use in heterogeneous and homogeneous assay formats are describe...
متن کاملOne-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals.
Colloidal semiconductor nanocrystals are widely used as lumiphores in biological imaging because their luminescence is both strong and stable, and because they can be biofunctionalized. During synthesis, nanocrystals are typically passivated with hydrophobic organic ligands, so it is then necessary either to replace these ligands or encapsulate the nanocrystals with hydrophilic moieties to make...
متن کاملUltrasensitive Luminescent In Vitro Detection for Tumor Markers Based on Inorganic Lanthanide Nano‐Bioprobes
Ultrasensitive and accurate detection of tumor markers is of vital importance for the screening or diagnosis of cancers at their early stages and for monitoring cancer relapse after surgical resection. Inorganic lanthanide (Ln3+) nanoparticles (NPs), owing to their superior physicochemical characteristics, are regarded as a new generation of luminescent nano-bioprobes in the field of cancer dia...
متن کاملEu, Gd-Codoped Yttria Nanoprobes for Optical and T₁-Weighted Magnetic Resonance Imaging.
Nanoprobes with multimodal functionality have attracted significant interest recently because of their potential applications in nanomedicine. This paper reports the successful development of lanthanide-doped Y₂O₃ nanoprobes for potential applications in optical and magnetic resonance (MR) imaging. The morphology, structural, and optical properties of these nanoprobes were characterized by tran...
متن کاملTaking advantage of luminescent lanthanide ions.
Lanthanide ions possess fascinating optical properties and their discovery, first industrial uses and present high technological applications are largely governed by their interaction with light. Lighting devices (economical luminescent lamps, light emitting diodes), television and computer displays, optical fibres, optical amplifiers, lasers, as well as responsive luminescent stains for biomed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature chemical biology
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2018